一、自吸效應校正背景:
自吸效應校正背景法是基子高電流脈沖供電時空心陰極燈發(fā)射線的自吸效應。
當以低電流脈沖供電時,空心陰極燈發(fā)射銳線光譜,測定的是原子吸收和背景吸收的總吸光度。
接著以高電流脈沖供電,空心陰極燈發(fā)射線變寬,當空心陰極燈內積聚的原子濃度足夠高時,發(fā)射線產生自吸,在極端的情況下出現(xiàn)譜線自蝕,這時測得的是背景吸收的吸光度。
上述兩種脈沖供電條件下測得的吸光度之差,便是校正了背景吸收的凈原子吸收的吸光度。
這種校正背景的方法可對分析線鄰近的背景進行迅速的校正,跟得上背景的起伏變化。
高電流脈沖時間非常短,只有0.3 ms,然后恢復到“空載”水平,時間為1 ms,經(jīng)40 ms直到下一個電流周期,這種電流波形的占空比相當?shù)?,所以平均電流較低,不影響燈的使用壽命。
本法可用于全波段的背景校正。對于在高電流脈沖下譜線產生自吸程度不夠的元素,測定靈敏度有所降低。這種校正背景的方法特別適用于在高電流脈沖下共振線自吸嚴重的低溫元素。
二、塞曼效應校正背景
塞曼效應校正背景是基于光的偏振特性,分為兩大類:光源調制法與吸收線調制法。以后者應用較廣。
調制吸收線的方式,有恒定磁場調制方式和可變磁場調制方式。
塞曼效應校正背景可在全波段進行,可校正吸光度高達1.5 ~ 2.0的背景,而氘燈只能校正吸光度小于1 的背景,背景校正的準確度較高,能校正結構背景。
此種校正背景法的缺點是,校正曲線有返轉現(xiàn)象。采用恒定磁場調制方式,測定靈敏度比常規(guī)原子吸收法有所降低。可變磁場凋制方式的測定靈敏度已接近常規(guī)原子吸收法。
三、連續(xù)光源校正背景
先用銳線光源測定分析線的原子吸收和背景吸收的總光度,再用氘燈(紫外區(qū))或碘鎢燈、氙燈(可見區(qū))在同一波長測定背景吸收(這時原子吸收可以忽略不計),計算兩次測定吸光度之差,即可使背景吸收得到校正。
連續(xù)光源測定的是整個光譜通帶內的平均背景,與分析線處的真實背景有差異。空心陰極燈是濺射放電燈,氘燈是氣體放電燈.這兩種光源放電性質不同能量分布不同,光斑大小不同,調整光路平衡比較困難,影響校正背景的能力,由于背景空間、時間分布的不均勻性,導致背景校正過度或不足。氘燈的能量較弱。使用它校正背景時,不能用很窄的光譜通帶,共存元素的吸收線有可能落入通帶范圍內吸收氘燈輻射而造成干擾。該法不能校正結構背景。
四、鄰近非共振線校正背景
用分析線測量原子吸收與背景吸收的總吸光度,因非共振線不產生原子吸收,用它來測量背景吸收的吸光度,兩次測量值相減即得到校正背景之后的原子吸收的吸光度。
由于背景吸收隨波長而改變,因此,非共振線校正背景法的準確度較差。這種方法只適用于分析線附近背景分布比較均勻的場合。